307 research outputs found

    Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro

    Get PDF
    Trans-splicing, the in vivo joining of two RNA molecules, is well characterized in several groups of simple organisms but was long thought absent from fungi, plants and mammals. However, recent bioinformatic analyses of expressed sequence tag (EST) databases suggested widespread trans-splicing in mammals^1-2^. Splicing, including the characterised trans-splicing systems, involves conserved sequences at the splice junctions. Our analysis of a yeast non-coding RNA revealed that around 30% of the products of reverse transcription lacked an internal region of 117 nt, suggesting that the RNA was spliced. The junction sequences lacked canonical splice-sites but were flanked by direct repeats, and further analyses indicated that the apparent splicing actually arose because reverse transcriptase can switch templates during transcription^3^. Many newly identified, apparently trans-spliced, RNAs lacked canonical splice sites but were flanked by short regions of homology, leading us to question their authenticity. Here we report that all reported categories of non-canonical splicing could be replicated using an in vitro reverse transcription system with highly purified RNA substrates. We observed the reproducible occurrence of ostensible trans-splicing, exon shuffling and sense-antisense fusions. The latter generate apparent antisense non-coding RNAs, which are also reported to be abundant in humans^4^. Different reverse transcriptases can generate different products of template switching, providing a simple diagnostic. Many reported examples of splicing in the absence of canonical splicing signals may be artefacts of cDNA preparation

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    Community resilience : a policy tool for local government?

    Get PDF
    In many countries, local government has been a prime target of austerity measures. In response, local authorities are exploring a new repertoire of policy approaches in a bid to provide more with less. In England, local authorities have been drawn to community resilience as a pragmatic response to the challenge of deploying shrinking resources to support communities exposed to social and economic disruption. This application of resilience thinking is not without its challenges. It demands a working definition of community resilience that recognises the potential for communities to prove resilient to shocks and disruptions, but avoids blaming them for their predicament. There is also the practical challenge of developing and targeting interventions to promote and protect resilience. This paper sets out to explore these issues and establish the potential utility of community resilience as a policy tool through case study analysis in the city of Sheffield

    Public attitudes towards alcohol control policies in Scotland and England: Results from a mixed-methods study

    Get PDF
    The harmful effects of heavy drinking on health have been widely reported, yet public opinion on governmental responsibility for alcohol control remains divided. This study examines UK public attitudes towards alcohol policies, identifies underlying dimensions that inform these, and relationships with perceived effectiveness. A cross-sectional mixed methods study involving a telephone survey of 3477 adult drinkers aged 16-65 and sixteen focus groups with 89 adult drinkers in Scotland and England was conducted between September 2012 and February 2013. Principal components analysis (PCA) was used to reduce twelve policy statements into underlying dimensions. These dimensions were used in linear regression models examining alcohol policy support by demographics, drinking behaviour and perceptions of UK drinking and government responsibility. Findings were supplemented with a thematic analysis of focus group transcripts. A majority of survey respondents supported all alcohol policies, although the level of support varied by type of policy. Greater enforcement of laws on under-age sales and more police patrolling the streets were strongly supported while support for pricing policies and restricting access to alcohol was more divided. PCA identified four main dimensions underlying support on policies: alcohol availability, provision of health information and treatment services, alcohol pricing, and greater law enforcement. Being female, older, a moderate drinker, and holding a belief that government should do more to reduce alcohol harms were associated with higher support on all policy dimensions. Focus group data revealed findings from the survey may have presented an overly positive level of support on all policies due to differences in perceived policy effectiveness. Perceived effectiveness can help inform underlying patterns of policy support and should be considered in conjunction with standard measures of support in future research on alcohol control policies

    RF IC performance optimization by synthesizing optimum inductors

    Get PDF
    Even with optimal system design and careful choice of topology for a particular RF application, large amounts of energy are often wasted due to low-quality passives, especially inductors. Inductors have traditionally been difficult to integrate due to their inherent low quality factors and modelling complexity. Furthermore, although many different inductor configurations are available for an RF designer to explore, support for integrated inductors in electronic design automation tools and process design kits has been very limited in the past. In this chapter, a recent advance in technology-aware integrated inductor design is presented, where drawbacks of the integrated inductor design are addressed by introducing an equation-based inductor synthesis algorithm. The intelligent computation technique aims to allow RF designers to optimize integrated inductors, given the inductor center frequency dictated by the device application, and geometry constraints. This does not only lay down a foundation for system-level RF circuit performance optimization, but, because inductors are often the largest parts of an RF system, it also allows for optimal usage of chip real estate

    Bayesian Methods for Exoplanet Science

    Full text link
    Exoplanet research is carried out at the limits of the capabilities of current telescopes and instruments. The studied signals are weak, and often embedded in complex systematics from instrumental, telluric, and astrophysical sources. Combining repeated observations of periodic events, simultaneous observations with multiple telescopes, different observation techniques, and existing information from theory and prior research can help to disentangle the systematics from the planetary signals, and offers synergistic advantages over analysing observations separately. Bayesian inference provides a self-consistent statistical framework that addresses both the necessity for complex systematics models, and the need to combine prior information and heterogeneous observations. This chapter offers a brief introduction to Bayesian inference in the context of exoplanet research, with focus on time series analysis, and finishes with an overview of a set of freely available programming libraries.Comment: Invited revie

    Stochastic population growth in spatially heterogeneous environments

    Full text link
    Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population growth, we study the following model for population abundances in nn patches: the conditional law of Xt+dtX_{t+dt} given Xt=xX_t=x is such that when dtdt is small the conditional mean of Xt+dtiβˆ’XtiX_{t+dt}^i-X_t^i is approximately [xiΞΌi+βˆ‘j(xjDjiβˆ’xiDij)]dt[x^i\mu_i+\sum_j(x^j D_{ji}-x^i D_{ij})]dt, where XtiX_t^i and ΞΌi\mu_i are the abundance and per capita growth rate in the ii-th patch respectivly, and DijD_{ij} is the dispersal rate from the ii-th to the jj-th patch, and the conditional covariance of Xt+dtiβˆ’XtiX_{t+dt}^i-X_t^i and Xt+dtjβˆ’XtjX_{t+dt}^j-X_t^j is approximately xixjΟƒijdtx^i x^j \sigma_{ij}dt. We show for such a spatially extended population that if St=(Xt1+...+Xtn)S_t=(X_t^1+...+X_t^n) is the total population abundance, then Yt=Xt/StY_t=X_t/S_t, the vector of patch proportions, converges in law to a random vector Y∞Y_\infty as tβ†’βˆžt\to\infty, and the stochastic growth rate lim⁑tβ†’βˆžtβˆ’1log⁑St\lim_{t\to\infty}t^{-1}\log S_t equals the space-time average per-capita growth rate \sum_i\mu_i\E[Y_\infty^i] experienced by the population minus half of the space-time average temporal variation \E[\sum_{i,j}\sigma_{ij}Y_\infty^i Y_\infty^j] experienced by the population. We derive analytic results for the law of Y∞Y_\infty, find which choice of the dispersal mechanism DD produces an optimal stochastic growth rate for a freely dispersing population, and investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results provide fundamental insights into "ideal free" movement in the face of uncertainty, the persistence of coupled sink populations, the evolution of dispersal rates, and the single large or several small (SLOSS) debate in conservation biology.Comment: 47 pages, 4 figure

    Multifractal Spatial Patterns and Diversity in an Ecological Succession

    Get PDF
    We analyzed the relationship between biodiversity and spatial biomass heterogeneity along an ecological succession developed in the laboratory. Periphyton (attached microalgae) biomass spatial patterns at several successional stages were obtained using digital image analysis and at the same time we estimated the species composition and abundance. We show that the spatial pattern was self-similar and as the community developed in an homogeneous environment the pattern is self-organized. To characterize it we estimated the multifractal spectrum of generalized dimensions Dq. Using Dq we analyze the existence of cycles of heterogeneity during succession and the use of the information dimension D1 as an index of successional stage. We did not find cycles but the values of D1 showed an increasing trend as the succession developed and the biomass was higher. D1 was also negatively correlated with Shannon's diversity. Several studies have found this relationship in different ecosystems but here we prove that the community self-organizes and generates its own spatial heterogeneity influencing diversity. If this is confirmed with more experimental and theoretical evidence D1 could be used as an index, easily calculated from remote sensing data, to detect high or low diversity areas

    Mutability and Importance of a Hypermutable Cell Subpopulation that Produces Stress-Induced Mutants in Escherichia coli

    Get PDF
    In bacterial, yeast, and human cells, stress-induced mutation mechanisms are induced in growth-limiting environments and produce non-adaptive and adaptive mutations. These mechanisms may accelerate evolution specifically when cells are maladapted to their environments, i.e., when they are are stressed. One mechanism of stress-induced mutagenesis in Escherichia coli occurs by error-prone DNA double-strand break (DSB) repair. This mechanism was linked previously to a differentiated subpopulation of cells with a transiently elevated mutation rate, a hypermutable cell subpopulation (HMS). The HMS could be important, producing essentially all stress-induced mutants. Alternatively, the HMS was proposed to produce only a minority of stress-induced mutants, i.e., it was proposed to be peripheral. We characterize three aspects of the HMS. First, using improved mutation-detection methods, we estimate the number of mutations per genome of HMS-derived cells and find that it is compatible with fitness after the HMS state. This implies that these mutants are not necessarily an evolutionary dead end, and could contribute to adaptive evolution. Second, we show that stress-induced Lac+ mutants, with and without evidence of descent from the HMS, have similar Lac+ mutation sequences. This provides evidence that HMS-descended and most stress-induced mutants form via a common mechanism. Third, mutation-stimulating DSBs introduced via I-SceI endonuclease in vivo do not promote Lac+ mutation independently of the HMS. This and the previous finding support the hypothesis that the HMS underlies most stress-induced mutants, not just a minority of them, i.e., it is important. We consider a model in which HMS differentiation is controlled by stress responses. Differentiation of an HMS potentially limits the risks of mutagenesis in cell clones
    • …
    corecore